OPTICAL TURBULENCE SIMULATIONS WITH MESO-SCALE MODELS

"TOWARDS A NEW GROUND-BASED ASTRONOMY ERA"

Elena Masciadri
INAF- Osservatorio Astrofisico di Arcetri, Italy
1997 - 2007

Avila Remy
Azouit Max
Bougeault Philippe
Egner Sebastian
Garfias Tania
Geissler Kerstin
Jabouille Patrick
Hagelin Susanna
Lascaux Franck
McKenna Dan
Sanchez Leonardo
Stoesz Jeff
Vernin Jean

* FOROT Team

3D Optical Turbulence Forecasts above Astronomical Sites

http://forot.arcetri.astro.it
Outline

- Meso-scale models challenges in Astronomy
- **Dynamic** and **Optical** Turbulence Parameterization
- Review “mesoscale simulations” in astronomic field
- **MESO-NH*** Model Reliability
- **ForOT**: an answer to the missing link between astronomy/meteorology

*Meso-Nh code: CNRM-LA, Toulouse, France
Astro Meso-Nh code: Masciadri et al. 1999

Kona - Hawaii March 2007
Ground-based astronomy is still competitive with respect to the space-based one

- Lower financial investment
- Longer typical lifetime
- Better angular resolution thank to the larger pupils size of ground-based telescopes

AO techniques can correct perturbations induced by atmospheric turbulence

PROBLEM

Instruments provide **LOCAL** measurements
Meso-scale models potentiality

3D

\[D_N(\rho) = \left\langle \left[n(r) - n(r+\rho) \right]^2 \right\rangle = C_N^2 \cdot \rho^{2/3} \]

\[l_0 < \rho < L_0 \]

Kolmogorov Model

3D \(V, T, p, L_0, C_N^2 \)

\((x,y,z) \)

wind speed

2D

\[\int_{0}^{\infty} F(h, V, L_0) \cdot C_N^2 \, dh \]

\(\rightarrow \varepsilon, \theta_0, \tau_0, \sigma^2, L_0, h_M, \theta_M \) \((M=1,2,3) \)

ForOT

Kona - Hawaii March 2007
Meso-scale models challenges in Astronomy

- To forecast the optical turbulence ➔ flexible-scheduling
- To reconstruct $3D C_n^2$ maps in a region around a telescope
- To perform a climatology of the optical turbulence extended over decades (access to “past”)

No other tools of investigation for these scientific goals

Seeing @ Cerro Paranal – black dots
Parameterization

GCM (General Circulation Models)

\[w' \theta' = K \frac{\partial \theta}{\partial z} \]

TEMPORAL SCALE

- micro
- macro

SPATIAL SCALE

- eddy diffusivity approach

< 1 cm

10 m

1 km

102 km

104 km

< 10^{-3} \text{ sec}

1 \text{ min}

10^4 \text{ sec}

GCM (p, V, T, H)

TURBULENCE PARAMETERIZATION

OPTICAL TURBULENCE

Kona - Hawaii March 2007
Parameterization in **MESO-NH**

- **Dynamic Turbulence Parameterization**
 - Mixing length - $L_0(h)$
 - Turbulent kinetic energy

 \[
 w' \theta_v = -0.16 \cdot L \cdot \sqrt{e} \cdot \phi_3 \cdot \frac{\partial \theta_v}{\partial z}
 \]
 - Microscopic
 - Macroscopic
 - Thermo-dynamic stability term
 - Redelsperger & Sommeria 1981

- **Optical Turbulence Parameterization** (**Astro-MesoNh**)
 - Mixing length - $L_0(h)$
 - Potential temperature

 \[
 C_T^2 = 0.58 \cdot \phi_3 \cdot L^{4/3} \cdot \left(\frac{\partial \bar{\theta}}{\partial z} \right)^2
 \]
 \[
 C_N^2 = \left(\frac{80 \times 10^{-6} \cdot P}{T^2} \right)^2 C_T^2
 \]
 - Masciadri et al. 1999a
 - Masciadri et al. 2001

Buoyancy term of TKE equation

- Bougeault et al. 1989
- Cuxart et al. 1995

Gladstone’s law

- Gladstone’s laws

Kona - Hawaii March 2007
Review in Astronomical field (1)

- 1995 Bougeault et al. [Ref: Applied Optics, 1995, 34, 3481]
 - First Hydrostatic model (PERIDOT)
 - Orographic model (3-10 km)
 - First Non-hydrostatic model (MESO-NH) [Ref: 1999b, A&ASS, 137, 203]
 - First employment of vertical turbulence distribution (C_n^2 profiles)
 - New calibration method
 - First evidence of the horizontal finite extent turbulent layers
Review in Astronomical field (2)

- **2002 Businger et al.** [Ref: 2002, BAMS, 858]
 - The Mauna Kea Weather Center is announced

- **2003 Masciadri** [Ref: 2003, RMxAA, 39, 249]
 - Mesoscale models and near ground wind speed for ELT site selection
 - Mesoscale models (25-45) % better than GCMs

- **2004 Masciadri, Avila, Sanchez** [Ref: 2004, RMxAA, 40, 3]
 - First model validation in statistic terms (10 nights - San Pedro Mártir)
 - Measurements: GS, thermosondes, mast, DIMM

 - First statistic analysis (1 year) of C_{N}^{2} & ALL astro-climatic parameters ε, θ_0, τ_0, σ^2, \mathcal{L}_0, h_M, θ_M ($M=1,2,3$)

Cherubini Adair

\{ MM5 developed by NCAR (US) \}
Can we simulate the optical turbulence?

Paranal 1992
(VLT site testing)

San Pedro Martir 1997

Paranal 1993
(VLT site testing)
Meso-Nh model Validation & Reliability

San Pedro Martir - Baja California, Mexico

Averaged estimates on 10 nights

Dotted line: Meso-Nh
Thin line: thermosondes
Bold line: GS

Masciadri, Avila, Sanchez, 2004, RMxAA, 40, 3
Meso-Nh model Validation & Reliability

San Pedro Martir - Baja California, Mexico

Averaged estimates on 10 nights

<table>
<thead>
<tr>
<th></th>
<th>GS - dome</th>
<th>Meso-Nh - surf.</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathcal{E}_{TOT}</td>
<td>0.79"</td>
<td>0.93"</td>
</tr>
<tr>
<td>\mathcal{E}_{BL}</td>
<td>0.52"</td>
<td>0.77"</td>
</tr>
<tr>
<td>\mathcal{E}_{FA}</td>
<td>0.42"</td>
<td>0.45"</td>
</tr>
</tbody>
</table>

$\Delta \mathcal{E}_{TOT} = 0.14"$

Dotted line: Meso-Nh
Thin line: thermosondes

Masciadri, Avila, Sanchez, 2004, RMxAA, 40, 3

Kona - Hawaii March 2007
Meso-Nh model Validation & Reliability (3)

- **GS/Meso-Nh** \(\Delta \varepsilon \sim 30 \% \)
 - San Pedro Martir
 - Masciadri, Avila, Sanchez, 2004, RMxAA, 40, 3
 - 10 nights

- **GS/thermosondes** \(\Delta \varepsilon \sim 30 \% \)
 - San Pedro Martir
 - Masciadri, Avila, Sanchez, 2004, RMxAA, 40, 3
 - Azouit & Vernin, 2005, PASP
 - 4 weeks
 - Cerro Pachon

- **GS/MASS** \(\Delta \varepsilon \sim 20 \% \) @ 8-16 km
 - 50-100 \% @ 0-4 km
 - Mauna Kea
 - Tokovinin et al., 2005, PASP, 117, 395
 - 4 nights
Meso-Nh model Validation & Reliability (4)

- **GS/Meso-Nh** \(\Delta \varepsilon \sim 30\%\)
 Masciadri, Avila, Sanchez, 2004, A
dAA, 40, 3
 San Pedro Martir

- **GS/thermosondes** \(\Delta \varepsilon \sim 30\%\)
 Masciadri, Avila, Sanchez, 2004, A
dAA, 40, 3
 San Pedro Martir

- **GS/MASS** \(\Delta \varepsilon \sim 50-100\% @ 0-4\,\text{km}\)
 Tokovinin et al., 2005, PASP, 117, 395
 4 nights
 Mauna Kea

Meso-Nh can be used to characterize OT on long time extent

Optical Turbulence Climatology
First statistical analysis of ALL astroclimatic parameters

SPM - 80 nights - uniformly distributed along 1 year

- Is this seasonal trend universal?
- Which is the physical explanation of such a trend?
- Which effects on other astro-climatic parameters?

First statistical analysis of ALL astroclimatic parameters

SPM - 80 nights - uniformly distributed along 1 year

Is this seasonal trend universal?
Which is the physical explanation of such a trend?
Which effects on other astro-climatic parameters?

Kona - Hawaii March 2007
80 nights

16 nights

Egger, Masciadri, McKenna, to be submitted

Kona - Hawaii March 2007
Simulations vs. Measurements

SIMULATIONS

- **Masciadri & Egner (2006)**
 - $\varepsilon_{(10-15)\text{km}} \sim 0.22''$
 - $\theta_0 \sim 1.42''$

MEASUREMENTS

- **Avila et al. (2004)**
 - $\varepsilon_{(10-15)\text{km}} \sim 0.24''$
 - $\theta_0 \sim 1.87''$

Seasonal variation

\[\Delta \varepsilon_{\text{summer-winter}} \]

- **Masciadri & Egner (2006)**
 - $\Delta \varepsilon_{\text{sum.-wint.}} \sim 0.22''$

- **Michel et al. (2003)**
 - $\Delta \varepsilon_{\text{sum.-wint.}} \sim 0.22''$ (DIMM)

- **Echevarría et al. (1998)**
 - $\Delta \varepsilon_{\text{sum.-wint.}} \sim 0.11''$ (SST)
ForOT: an answer to the missing link astronomy/meteorology

NEXT STEPS

1. Forecast of the optical turbulence

2. Search and selection of NEW sites

3. Implementation of models on autonomous machines ➔ research group

ForOT
an independent research group
funded by the European Community
ForOT Core Project

Mt. GRAHAM

30 km

\[\Delta x = 500 \text{ m} \]

ANTARCTIC PLATEAU

6000 km

\[\Delta x = 100 \text{ km} \]

MESO-NH model
ForOT Core Project

Mt. GRAHAM
- 30 km
- \(\Delta x = 500 \text{ m} \)

ANTARCTIC PLATEAU
- 6000 km
- \(\Delta x = 100 \text{ km} \)

Main goal:
- Forecasting for flexible-scheduling
- Site independent calibration for sites searches

LBT

DOME C

MESO-NH model
Physics of the Atmosphere

Wavefront perturbations by atmospheric turbulence

Adaptive Optics

Interferometry

Image Processing

ASTROPHYSICS

METEOROLOGY

ForOT

HAR traditional

NG-HAR
This work has been funded by the “Marie Curie Excellence Grant” (ForOT) MEXT-CT-2005-023878